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Abstract 

In this study; free vibration analysis of a uniform, rotating, cantilever Timoshenko beam featuring 

coupling between flapwise bending and torsional vibrations is performed. At the beginning of the 

study, kinetic and potential energy expressions of a rotating Timoshenko beam having single 

cross-sectional symmetry are derived by using several explanatory tables and figures. In the 

following section, Hamilton’s principle is applied to the derived energy expressions to obtain the 

governing differential equations of motion. The parameters for the hub radius, rotational speed, 

rotary inertia, shear deformation, slenderness ratio and bending-torsion coupling are incorporated 

into the equations of motion. In the solution part, an efficient mathematical technique, called the 

Differential Transform Method (DTM), is used to solve the governing differential equations of 

motion. Using the computer package, Mathematica, the mode shapes are plotted, the effects of the 

incorporated parameters on the natural frequencies are investigated. The calculated results are 

tabulated in several tables and plotted in several graphics. In order to validate the calculated 

results, the beam is also modeled in the finite element program, ABAQUS. Moreover, two 

illustrative examples, chosen from open literature, are solved for further validation1 

Consequently, it is observed that there is a good agreement between the results. 
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1. Introduction 

When the cross-sections of an isotropic beam have two symmetric axes, the shear 

center and the centroid of the cross-sections coincide. Therefore, transverse and lateral 

bending vibrations are not coupled with the torsional vibration. However, when the cross-

sections have only one symmetry axis, the shear center and the centroid do not coincide 

and the bending vibration that occurs in the plane perpendicular to the symmetry axis is 

coupled with the torsional vibration. 

Several engineering components, such as blades in turbines, compressors, propellers 

or helicopter rotors, usually have non-coincident elastic and inertial axes, which are 

respectively the shear centers and the loci of centroids of the cross-sections. Therefore, 

the determination of the dynamic characteristics of rotating coupled beams is of great 

importance in the design of such components. As a result, free and forced vibration 

characteristics of bending-torsion coupled beams have been an interesting area for many 

researchers. Houbolt and Brooks (1958) derived the equations of motion of a cantilever 

Euler-Bernoulli beam in coupled bending-bending-torsion vibration motion by including 

the rotation effects. Bishop and Price (1977) studied the coupled bending–torsion 

vibration of the Timoshenko beams without including the warping stiffness. 

Subrahmanyam et. al. (1981) presented natural frequencies and modal shapes of a 

rotating blade of asymmetrical aerofoil cross-section with allowance for shear deflection 

and rotary inertia. Hallauer and Liu (1982) derived the exact dynamic stiffness matrix for 

a bending–torsion coupled Euler-Bernoulli beam with the warping stiffness ignored. 
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Dokumaci (1987) derived the exact analytical expressions for the solution of the 

bending–torsion equations without the warping effect. Bishop et. al. (1989) extended the 

study of Dokumaci by including the warping effect. Banerjee and Williams (1992, 1994) 

derived the analytical expressions for the coupled bending–torsion dynamic stiffness 

matrix of a Timoshenko beam excluding the warping stiffness effect. Banerjee et. al. 

(1996) recast the study of Bishop et. al. (1989) by using the dynamic stiffness matrix. 

Eslimy-Isfahany et. al. (1996) studied the response of a bending-torsion coupled beam to 

deterministic and random loads. Bercin and Tanaka (1997) included the effects of 

warping, shear deformation and rotary inertia in their study of coupled flexural-torsional 

vibrations of beams having single axis of symmetry. Hashemi and Richard (2000) 

presented a new dynamic finite element for the bending–torsion coupled Euler-Bernoulli 

beams with the warping stiffness omitted. Sabuncu and Evran (2005) studied the dynamic 

stability of an asymmetric cross-section rotating Timoshenko beam without pretwist. 

In this study, which is an extension of the authors’ previous works [Kaya (2006), 

Özdemir and Kaya (2006a), Ozdemir Ozgumus and Kaya (2006b)], free vibration 

analysis of a uniform, rotating, cantilever Timoshenko beam featuring coupling between 

flapwise bending and torsional vibrations is performed. At the beginning of this study 

both the kinetic and the potential energy expressions are derived step by step using 

explanatory tables and figures. The parameters for the hub radius, rotational speed, rotary 

inertia, shear deformation, slenderness ratio and bending-torsion coupling are 

incorporated into the formulation. Furthermore, the governing differential equations of 

motion and the related boundary conditions are obtained applying the Hamilton’s 

principle to the derived energy expressions and solved using an efficient mathematical 
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technique, called the Differential Transform Method (DTM). Using the computer 

package, Mathematica, the natural frequencies are calculated, the mode shapes are plotted 

and the effects of the incorporated parameters are investigated. Unfortunately, a suitable 

example was not present in open literature for validation. Therefore, the examined beam 

is modeled in the finite element program, ABAQUS in order to validate the calculated 

results of this study. Additionally, two examples that study simpler Timoshenko beam 

models are found in open literature and solved in order to make comparisons. 

Consequently, it is observed that there is a good agreement between the results. 

Partial differential equations are often used to describe engineering problems whose 

closed form solutions are very difficult to establish in many cases. Therefore, 

approximate numerical methods, i.e. finite element, finite difference, boundary element 

methods, etc. are often preferred. However, in spite of the advantages of these on hand 

methods and the computer codes that are based on them, closed form solutions are more 

attractive due to their implementation of the physics of the problem and their 

convenience for parametric studies. Moreover, closed form solutions have the capability 

and facility to solve inverse problem of determining and designing the geometry and 

characteristics of an engineering system and to achieve a prescribed behaviour of the 

system. Considering the advantages of the closed form solutions mentioned above, the 

Differential Transform Method, DTM, is introduced in this study as the solution method. 

In open literature, there are several studies that used DTM to deal with linear and 

nonlinear initial value problems, eigenvalue problems, ordinary and partial differential 

equations, aeroelasticity problems, etc. A brief review of these studies is given by 

Ozdemir Ozgumus and Kaya (2006b).  
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2. Beam Configuration 

The governing differential equations of motion are derived for the bending-torsion 

coupled free vibration of a rotating, uniform, cantilever Timoshenko beam represented by 

Figure 1, in a right-handed Cartesian coordinate system. Here, the xyz  axes constitute a 

global orthogonal coordinate system with origin at the root of the beam. The x -axis 

coincides with the neutral axis of the beam in the undeflected position, the z -axis is 

parallel to the axis of rotation, but not coincident and the y -axis lies in the plane of 

rotation. 

FIGURE 1 

Here, a uniform cantilever beam of length L , height h  and width b  which is fixed at 

point O  to a rigid hub with radius R , is shown. The hub is assumed to be rotating in the 

counter-clockwise direction at a constant angular velocity, Ω .  

The cross-sectional view and the associated dimensions are introduced in Figure 2. As 

it is seen in Figure 2, the cross-section of the beam is symmetric only about one axis 

which is the y  axis. Therefore, as mentioned in the introduction part the mass and elastic 

axes of the beam, which are respectively the loci of centroids and shear centers of the 

cross-sections, are separated by a distance e , as shown in Figure 1 and the flapwise 

bending vibration is coupled with the torsional vibration.  

FIGURE 2 

 The following assumptions are made in this study, 

a. The flapwise bending displacement is small. 

b. The planar cross sections that are initially perpendicular to the neutral axis of the 

beam remain plane, but no longer perpendicular to the neutral axis during bending. 
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c. The beam material is homogeneous and isotropic. 

3. Derivation of the Equations of Motion 

Derivations of both the kinetic and potential energy expressions are made by 

considering Figures 3(a) and 3(b) where the cross-sectional and the side views of the 

flapwise bending-torsion coupled motion of a rotating, uniform Timoshenko beam are 

given. In this study, coupling that occurs between flapwise bending and torsion is 

examined. Since the chordwise bending vibration is not included, it is not considered in 

any figure or formula. 

FIGURES 3(a) and 3(b) 

Here, a reference point is chosen and is represented by 0P  before deformation and by P  

after deformation.  

3.1. Derivation of the Potential Energy Expression 

Considering Figures 3(a) and 3(b), the coordinates of the reference point are given as 

follows 

a. Before deformation (coordinates of 0P ):  

xRx +=0                (1a) 

η=0y                 (1b) 

ξ=0z                 (1c) 

b. After deformation (coordinates of P ):  

ϕψηψξ SinSinCosuxRx )(01 +−++=            (2a) 

ψξψη SinCosy −=1               (2b) 
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ψηψξ SinCoswz ++=1              (2c) 

where x  is spanwise coordinate, 0u  is the axial displacement due to the centrifugal force, 

η  and ξ  are the sectional coordinates of 0P , w  is the flapwise bending displacement, ϕ  

is the rotation angle due to bending, γ  is the shear angle and ψ  is the torsion angle. 

The rotation angle due to bending, ϕ  and the torsion angle ψ  are small so it is 

assumed that ϕϕ ≅Sin  and ψψ ≅Sin . However, in order to investigate the torsional 

stability, the second order term of the series expansion of ψCos  is kept so it is assumed 

that 
2

1
2ψψ −≅Cos  [Hodges and Dowell (1974), Houbolt and Brooks (1957)]. Using 

these assumptions, equations (2a)-(2c) are rewritten as follows 

ϕηψψξ 







+−−++= )

2
1(

2

01 uxRx             (3a) 

ξψψη −−= )
2

1(
2

1y               (3b) 

ηψψξ +−+= )
2

1(
2

1 wz              (3c) 

Knowing that 0r
r  and 1r

r  are the position vectors of the reference point before and after 

deformation respectively, the position vector differentials can be given by 

( ) ( ) ( )kdzjdyidxrd
vvvv

0000 ++=                                   (4a) 

( ) ( ) ( )kdzjdyidxrd
vvvv

1111 ++=                                    (4b) 

where i
r

, j
r

 and k
r

 are the unit vectors in the x , y  and z  directions, respectively. 

The components of 0rdv  and 1rdv  are expressed as follows 



 8

dxdx =0                (5a) 

ηddy =0                (5b) 

ξddz =0                (5c) 

ξϕψηψϕϕψηψξψϕηψψξ dddudx )
2

1(--x  )()
2

1(1
22

01 −








′−′+′







+−−′+=   (6a) 

ξψηψψξψηψ dddxdy −−+′+′−= )
2

1()(
2

1               (6b) 

ξψηψψηψξψ dddxwdz )
2

1()(
2

1 −++′+′−′=               (6c) 

Here, dx , ηd  and ξd  are the increments along the deformed elastic axis and two cross 

sectional axes, respectively. 

The classical strain tensor ijε  may be obtained using the equilibrium equation below 

Eringen (1980) 

[ ][ ]















=−

ξ
ηεξη

d
d
dx

dddxrdrdrdrd ij2.. 0011
vvvv                                                                       (7) 

where [ ]















=

ξξξηξ

ηξηηη

ξη

εεε
εεε
εεε

ε

x

x

xxxx

ij . 

Substituting equations (5a)-(6c) into equation (7), the components of the strain tensor 

ijε  are obtained as follows 
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1)(

)()()
2

1(12

2

2

22

0

−′+′−′

+′+′+








′−′+′







+−−′+=

ηψψξψ

ψξψηψϕψηψξψϕηψψξγ

w

uxx       (8a) 

ψψηψξψψψξψηψ

ψϕϕψηψξψϕηψψξγ η

)()
2

1)((

)()()
2

1(12

2

2

0

′+′−′+−′+′

−








′−′+′







+−−′+−=

w

ux

        (8b) 

)
2

1()()(

)
2

1()()
2

1(12

2

22

0

ψψηψξψψψξψηψ

ϕψϕψηψξψϕηψψξγ ξ

−′+′−′+′+′

+−








′−′+′







+−−′+−=

w

ux

        (8c) 

In this study, xxγ , ηγ x  and ξγ x  are used in the calculations because as noted by 

Hodges and Dowell (1974) for long slender beams, the axial strain xxε  is dominant over 

the transverse normal strains, ηηε  and ξξε . Additionally, the shear strain ηξε  is two order 

smaller than the other shear strains, ηε x  and ξε x .  

In order to obtain simpler expressions for the strain components, higher order terms 

should be neglected so an order of magnitude analysis is performed by using the ordering 

scheme, taken from Hodges and Dowell (1974) and introduced in Table 1. Hodges and 

Dowell (1974) used the formulation for an Euler-Bernoulli beam. In this study, their 

formulation is modified for a Timoshenko beam and the following expression is added to 

their ordering scheme as a contribution to literature, 

)( 2εϕγ Ο=−′= w                   (9) 

Considering Table 1, the following simplified strain expressions are obtained. 

2222
0 ))((

2
1)(

2
1 ψξηϕξε ′++′+′−′= wuxx          (10a) 
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ψξγ η ′−=x              (10b) 

ψηϕγ ξ ′+−′= wx             (10c) 

TABLE 1 

The expression for the potential energy due to bending and torsion, btU , is given by  

dxddEU
L

A
xxbt ∫ ∫∫ 








=

0

2

2
1 ξηε              (11) 

where A  is the cross-section area and E  is the Young’s modulus.  

Substituting equation (10a) into equation (11), the following expression is obtained. 

dxddwuEU
L

A
bt ∫ ∫∫ 

















 ′++′+′−′=

0

2
2222

0 ))((
2
1)(

2
1

2
1 ξηψξηϕξ         (12) 

Taking integration over the blade cross-section and referring to the definitions given in 

Table 2, the following bending-torsion potential energy expression is obtained. 

dx
u

IdxwuEAdxEIdxuEAU
LLL

y

L

bt
2

0

02

0
0

2

00

2
0 )(

2
1)(

2
1)(

2
1)(

2
1 ψ

ρ
ϕ α ′

′
+′′+′+′= ∫∫∫∫               (13) 

where the mass moment of inertia about the elastic axis, αI , is given by 

∫∫ +=
A

ddI ξηξηρα )( 22              (14) 

TABLE 2 

The uniform strain 0ε  and the associated axial displacement 0u  due to the centrifugal 

force )(xT  is given by  

EA
xTxxu )()()( 00 ==′ ε               (15) 

where the centrifugal force is expressed as follows 
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dxxRAxT
L

x

)()( 2 +Ω= ∫ ρ              (16) 

Substituting equations (15) and (16) into equation (13) and noting that the 

dx
EA

xTL

∫
0

2 )(
2
1  term is constant and will be denoted with β , the final form of the bending-

torsion potential energy is obtained as follows 

βψ
ρ

ϕ α +






 ′+′+′= ∫∫ dx
A

I
wTdxEIU

L
L

ybt 0

222

0

)()(
2
1)(

2
1          (17) 

The expression for the potential energy due to shear, sU , is given by  

( ) dxddGU
L

A
xxs ∫ ∫∫ 








+=

0

22

2
1 ξηγγ ξη             (18) 

where G  is the shear modulus. 

Substituting equations (10b) and (10c) into equation (18), the following expression for 

the potential energy due to shear is obtained. 

[ ] dxddwGU
L

A
s ∫ ∫∫ 








′+−′+′=

0

222 )()(
2
1 ξηψηϕψξ          (19) 

Using the definitions given by Table 2, equation (19) can be rewritten as follows 

dxGJdxwkAGU
L

s })()({
2
1 22

0

ψϕ ′+−′= ∫            (20) 

where k  is the shear correction factor, kAG  is the shear rigidity and GJ  is the torsional 

rigidity of the beam cross section. 

Summing equations (17) and (20), the total potential energy expression is given by 





















+′+−′+






 ′+′+′= ∫
L

y dxGJwkAG
A

I
wTEIU

0

22222 )()()()()(
2
1 βψϕψ

ρ
ϕ α             (21) 
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3.2. Derivation of the Kinetic Energy Expression 

The velocity vector of the point P  is given by 

rk
t
rV rrrr

×Ω+
∂
∂

=  
 
               (22) 

where  

kzjyixr
rrrr

111 ++=               (23) 

Substituting equation (23) into equation (22), the total velocity vector expression is 

obtained as follows 

kzjxyiyxV
r

&
r

&
r

&
r

11111 ) () ( +Ω++Ω−=            (24) 

where 1x& , 1y&  and 1z&  are the derivatives of the coordinates with respect to time, t . 

Substituting equations (3a)-(3c) into equation (24) and applying the ordering scheme 

given by Table 1, the velocity components are obtained as follows 

Ω







−−−−+








+−−= ξψψηϕψηψξψϕηψψξ )

2
1()()

2
1(

22

&&&xV       (25a) 

( ) Ω
















+−−++++−= ϕηψψξψξηψ )

2
1(

2

0uxRVy &        (25b) 

( )ψξψη && −+= wVz             (25c) 

The general expression of the kinetic energy is 

( ) dxddVVV
L

A
zyx∫ ∫∫ 








++=ℑ

0

222

2
1 ξηρ      (26) 

Substituting equations (25a)-(25c) into equation (26) and using the definitions given in 

Table 3, the following kinetic energy expression is obtained.  
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[ ]{

[ ]}dxxRwAeI

IIIIwA

z

z

L

yy

   )(2)(2

)()(2
2
1

2

22

0

22222

ψϕψρψϕψϕρ

ψρψψϕψϕϕϕρρ α

Ω+−++Ω

+Ω−++−Ω++Ω+=ℑ ∫
&&&&

&&&&&
      (27) 

In most cases Coriolis terms can be ignored so equation (27) reduces to its final form 

as follows. 

( ){

[ ]}dxxRwAe

IIIIwA z

L

yy

   )(2

)(
2
1

2

22

0

22222

ψϕψρ

ψρψϕϕρρ α

Ω+−

+Ω−+++Ω+=ℑ ∫
&&

&&&
        (28) 

TABLE 3 

3.3. Governing Differential Equations of Motion 

The governing differential equations of motion and the associated boundary conditions 

are obtained applying the Hamilton’s principle, given below, to the derived energy 

expressions. 

∫ =−ℑ−
2

1

0)(
t

t

dtWUδ               (29) 

In this study, undamped, free vibration analysis is performed so variation of the the 

virtual work that is done by the nonconservative forces, Wδ , is zero in equation (29). 

Therefore, variation of the kinetic and potential energy expressions are taken and 

substituted into equation (29). 

Using variational principles, the equations of motions for a rotating, uniform 

Timoshenko beam with bending-torsion coupling are derived as follows 

[ ] 0)()( =′−′−′′−+ ϕψρρ wkAGwTAewA &&&&          (30a) 

0)(2)()( 22 =+Ω+Ω−−′−′′−Ω− ψρψρϕϕϕρϕρ xRAeIwkAGEIII yyyy &&&     (30b) 
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0)(2)()( 22 =+Ω+Ω+
′








 ′−′′−Ω−−+ ϕρϕρψ
ρ

ψψρρψ α
α xRAeI

A
TI

GJIIwAeI yzy &&&&&     (30c) 

Here, w  is the flapwise bending displacement, ϕ  is the rotation due to bending and ψ  is 

the torsion angle. 

In the preparation stage of this study, formulation was carried out by both including 

and excluding the Coriolis terms that are ψρ &ΩyI2  and ϕρ &ΩyI2 . Considering the time 

spent by Mathematica to calculate the natural frequencies, it is noticed that although the 

results of both formulation are very similar, calculations made by including the Coriolis 

terms takes much longer time than the ones made by excluding this term. Therefore, the 

equations of motion that do not include the Coriolis terms are used in the formulation. 

Neglecting the Coriolis terms, equations (30a)-(30c) reduce to 

[ ] 0)()( =′−′−′′−+ ϕψρρ wkAGwTAewA &&&&          (31a) 

0)()()( 22 =+Ω+−′−′′−Ω− ψρϕϕϕρϕρ xRAewkAGEIII yyy &&       (31b) 

0)()()( 22 =+Ω+
′








 ′−′′−Ω−−+ ϕρψ
ρ

ψψρρψ α
α xRAe

A
TI

GJIIwAeI zy&&&&      (31c) 

Additionally, after the application of the Hamilton’s principle, the boundary 

conditions are obtained as follows 

• The geometric boundary conditions at the cantilever end, 0=x , of the Timoshenko 

beam,  

( ) ( ) ( ) 0,0,0,0 === tttw ψϕ            (32a) 

• The natural boundary conditions at the free end, Lx = , of the Timoshenko beam, 

Shear force:   ( ) 0=−′+′ ϕwkAGwT         (32b) 
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Bending Moment:  0=′ϕyEI            (32c) 

Torsion:   0=′ψGJ            (32d) 

The boundary conditions expressed by Eqs. (32b)-(32d) can be written in a simpler 

form by noting that the centrifugal force is zero at the free end of the beam, ( ) 0=LT . 

0=−′ ϕw              (33a) 

0=′ϕ               (33b) 

0=′ψ               (33c) 

In this paper, a uniform beam is investigated so the cross-sectional area and moments 

of inertia do not change with respect to the spanwise direction, x  as is the case in a 

tapered beam problem so the governing differential equations of motion can be rewritten 

as follows 

0)()( =′−′′−′′−+ ϕψρρ wkAGwTAewA &&&&          (34a) 

0)()( 22 =+Ω+−′−′′−Ω− ψρϕϕϕρϕρ xRAewkAGEIII yyy &&       (34b) 

( ) 0)()( 22 =+Ω+′′−′′−Ω−−+ ϕρψ
ρ

ψψρρψ α
α xRAeT

A
I

GJIIwAeI zy&&&&      (34c) 

4. Vibration Analysis  

4.1. Harmonic Motion Assumption and Dimensionless Parameters  

In order to investigate the undamped free vibration of the beam model considered in 

this study, a sinusoidal variation of ),( txw , ),( txψ  and ),( txϕ  with a circular natural 

frequency, ω , is assumed and the functions are taken as   

( ) ( ) tiexWtxw ω=,             (35a) 
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( ) ( ) tiextx ωψψ =,             (35b) 

( ) ( ) tiextx ωϕϕ =,             (35c) 

Substituting equations (35a)-(35c) into equations (34a)-(34c) results in the following 

expressions 

( ) 0)(22 =′−′′+′′++ ϕψωρωρ WkAGWTAeWA         (36a) 

0)()( 222 =+Ω−−′+′′+Ω+ ψρϕϕϕρϕωρ xRAeWkAGEIII yyy       (36b) 

( ) 0)()( 2222 =+Ω−′′+′′+Ω−++ ϕρψ
ρ

ψψρωρψω α
α xRAeT

A
I

GJIIWAeI zy     (36c) 

In order to make comparisons with open literature, the following dimensionless 

parameters are introduced.  

L
xx =  

L
R

=δ  
L
ee =  

yEI
AL 24

2 Ω
=Ω
ρ

yEI
AL 24

2 ωρµ =  

22
2 1

AL
I

S
r y==  2

2

AL
Ir

ρ
α

α =  
2

2

kAGL
EI

s y=  
yEI

GJ
=2ε  

L
Ww =~  

Substituting these dimensionless parameters into equations (36a)-(36c), the 

dimensionless equations of motion are expressed as follows 

0~~~
)1(

2
1)1( 4322

2

1
2 =++++













 −+− ψϕδ A

xd
dAwA

xd
wdA

xd
wdxx

xd
d       (38a) 

0
~

43212

2

=++++ ψψϕϕ xBB
xd
wdBB

xd
d           (38b) 

0~)1(
2
1)1( 54322

2

1
2 =+++++













 −+− wCxCCC

xd
dC

xd
dxx

xd
d ϕϕψψψδ     (38c) 

where the coefficients are given by 

(37)
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221
1
Ω

=
s

A ,  2

2

2 Ω
=
µA ,  223

1
Ω

−=
s

A ,  2

2

4 Ω
=

µeA         (39a) 

22

2
22

1
1)1(
s

rB −
Ω

+Ω=
µ ,  22

1
s

B = ,  δ23 Ω−= eB ,  2
4 Ω−= eB        (39b) 

22

2

1
α

ε
r

C
Ω

= ,  12 2

2

2

2

2 −+
Ω

=
α

µ
r
rC ,  e

r
C 23

α

δ
−= ,  e

r
C 24

1

α

−= ,  e
r

C 2

2

25
1
Ω

=
µ

α

     (39c) 

4.2. The Differential Transform Method 

The Differential Transform Method, DTM, is a transformation technique based on the 

Taylor series expansion and is a useful tool to obtain analytical solutions of the 

differential equations. In this method, certain transformation rules are applied and the 

governing differential equations and the boundary conditions of the system are 

transformed into a set of algebraic equations in terms of the differential transforms of the 

original functions and the solution of these algebraic equations gives the desired solution 

of the problem. It is different from high-order Taylor series method because Taylor series 

method requires symbolic computation of the necessary derivatives of the data functions 

and is expensive for large orders. Details of the application procedure of DTM is 

explained by Ozdemir Ozgumus and Kaya (2006b) using several explanatory tables. 

4.3. Formulation with DTM 

In the solution step, the differential transform method is applied to equations (38a)-

(38c) at 00 =x  and the following transformed expressions are obtained. 

( )( ) [ ] [ ] ( ) [ ] ( )( ) [ ] 021211212 4321 =+++++++++++ kkkAkWkAkAkkkA ψϕϕ      (40a) 

( )( ) [ ] [ ] ( ) [ ] 011212 321 =+++++++ kkBkWBkWkkB ϕ        (40b) 

( )( ) [ ] [ ] ( )( ) [ ] 0212212 321 =++++++++ kkkCkCkkkC ϕψψ                  (40c) 
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Applying DTM to equations (32a)–(33c), the transformed boundary conditions are 

obtained as follows 

at 0=x      ⇒      [ ] [ ] [ ] 0000 === ψϕ W          (41a) 

at 1=x      ⇒      ( ) [ ] ( ) [ ] 01111 4 =+++++ kkAkk ψϕ         (41b) 

   ( ) [ ] [ ] 0111 =−++ kkWkB ϕ          (41c) 

   ( ) [ ] ( ) [ ] 01111 31 =+++++ kkCkkC ϕψ         (41d) 

Substituting the boundary conditions expressed in equations (41a)-(41d) into 

equations (40a)-(40c) and taking [ ] 11 d=ϕ , [ ] 21 dW = , [ ] 31 d=ψ , the following 

expression is obtained 

( ) ( ) ( ) ( ) ( ) ( ) 0332211 =++ dAdAdA n
j

n
j

n
j ωωω , 3,2,1=j            (42) 

where 21, dd  and 3d are constants and ( ) ( ) ( ) ( ) ( ) ( )ωωω n
j

n
j

n
j AAA 321 ,,  are polynomials of ω  

corresponding to n .  

The matrix form of equation (42) can be given by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 















=

































0
0
0

3

2

1

333231

232221

131211

d
d
d

AAA
AAA
AAA

nnn

nnn

nnn

ωωω
ωωω
ωωω

           (43) 

The eigenvalues are calculated by taking the determinant of the [ ]jiA  matrix. 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0

333231

232221

131211

=
ωωω
ωωω
ωωω

nnn

nnn

nnn

AAA
AAA
AAA

            (44) 

Solving equation (44), the eigenvalues are calculated. The thj  estimated eigenvalue, 

( )n
jω  corresponds to n  and the value of n  is determined by the following equation: 
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( ) ( ) εωω ≤− −1n
j

n
j                (45) 

where ( )1−n
jω  is the thj  estimated eigenvalue corresponding to 1−n  and where ε  is the 

tolerance parameter.  

If equations (45) is satisfied, then the thj  eigenvalue, ( )n
jω , is obtained. In general, 

( )n
jω  are conjugated complex values, and can be written as ( )

jj
n

j iba +=ω . Neglecting the 

small imaginary part jb , the thj  natural frequency, ja , is found. 

5. Results and Discussions 

At first glance, application of DTM to both the equations of motion and the boundary 

conditions seems to be very involved computationally. However, all the algebraic 

calculations are finished quickly by using a symbolic computational software. Therefore, 

the computer package Mathematica is used to write a code for the expressions given by 

equations .(40a)-(41d). The natural frequencies are calculated, the mode shapes are 

plotted and the effects of the rotational speed, rotary inertia, shear deformation, 

slenderness ratio and bending-torsion coupling are investigated. Additionally, in order to 

validate the calculated results, a rotating uniform Timoshenko beam that features 

bending-torsion coupling is created and analysed in the finite element program, 

ABAQUS and two illustrative examples which study simpler beam models are found in 

open literature and solved in order to make comparisons. Consequently, it is observed 

that there is a good agreement between the results. 

In Figures 4 (a-f), the first six normal mode shapes of a rotating uniform Timoshenko 

beam featuring bending-torsion coupling are introduced. As it is seen here, the first four 
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and the sixth modes are dominated by bending ( w  and ϕ ) while in the fifth mode, 

torsion (ψ ) is dominant. 

FIGURES 4 (a-f) 

In Figure 5, convergence of the first five natural frequencies with respect to the 

number of terms, N , used in DTM application is introduced. To evaluate up to the fifth 

natural frequency to five-digit precision, it was necessary to take 30 terms. During the 

calculations, it is noticed that when the rotational speed parameter is increased, the 

number of the terms has to be increased to achieve the same accuracy. Additionally, here 

it is seen that higher modes appear when more terms are taken into account in DTM 

application. Thus, depending on the order of the required mode, one must try a few 

values for the term number at the beginning of the Mathematica calculations in order to 

find the adequate number of terms. 

FIGURE 5 

In Table 4, variation of the first six natural frequencies, ω , with respect to the 

rotational speed,Ω  , is tabulated in Table 4 for the beam properties given below. 

Additionally, the results taken from ABAQUS are included and it is observed that there is 

a good agreement between the results of this study and the ABAQUS results.  

95118=GJ  Nm2   0.131=αI  kgm  65563.7=EI  Nm2 

 2.015x108=kAG  N 2527.27=Aρ  kg/m  0.0155=e  m 5=L  m 

TABLE 4 

Here it is seen that the natural frequencies increase with the increasing rotational speed 

because of the stiffening effect of the centrifugal force, equation (16), that is proportional 

to the square of the angular speed. The increase in the frequency due to rotation is 69 % 
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for the first bending mode, 35 % for the second bending mode, 17 % for the third bending 

mode, 11 % for the fourth bending mode and 7 % for the fifth bending mode. Comparing 

the percentage increase in the bending frequencies, it is noticed that the effect of the 

rotational speed is dominant on the fundamental bending mode and this effect diminishes 

rapidly as the frequency order increases. Moreover, the increase of frequency due to 

rotation is 0.34 % for the torsion dominated mode. Therefore, the effect of rotation on the 

torsion dominated modes is insignificant even when it is compared with the low bending 

dominated frequencies.  

For further validation, in Table 5, the results are compared with the ones calculated by 

Sabuncu and Evran (2005) and Eslimy-Isfahany and Banerjee (2000) for the values given 

below. 

For Sabuncu and Evran (2005), 

14.9=GJ  Nm2  10 x 96.34 -12=zI  m4  10 x 7928.2 -9=yI  m4  0.833=k  
9109.213 xE =  N/m2 0762.0=R  m  0.1524=L  m 0=e  m  

7859=ρ  kg/m3 -658.97x10 =A  m2   

where a nonrotating uniform Timoshenko beam that is uncoupled is considered. 

For Eslimy-Isfahany and Banerjee (2000), 

51088.9 ×=GJ  Nm2  61075.9 ×=yEI  Nm2 65.8=αI  kgm 
75.35=Aρ  kg/m 296154000=kAG  N 18.0−=e  m 

6=L  m   

where a nonrotating, uniform Timoshenko beam featuring bending-torsion coupling is 

considered.  
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TABLE 5 

In Table 6, effects of the bending-torsion coupling, rotary inertia and shear 

deformation are tabulated. Examining Table 6, the following results are obtained: 

 As noted by Subrahmanyam et. al. (1981), bending-torsion coupling has a 

decreasing effect on the bending dominated natural frequencies (the first four and the 

sixth modes) while it has an increasing effect on the torsion dominated frequencies (the 

fifth mode). 

 Rotary inertia and shear deformation effects that are results of the Timoshenko 

Beam Theory have a decreasing effect on the bending dominated natural frequencies. 

Therefore, the bending dominated natural frequencies of the coupled Timoshenko beam 

are lower than the natural frequencies of the coupled Euler-Bernoulli beam. However, 

rotary inertia and shear deformation have almost no effect on the torsion dominated 

natural frequencies. 

 Both the coupling effect and the Timoshenko effects are more significant on the 

higher modes. 

TABLE 6 

 In Table 7, effect of the Coriolis terms, ψρ &ΩyI2  and ϕρ &ΩyI2 , on the natural 

frequencies are introduced. Here it is observed that these terms are not very effective 

even when the hub rotates at very high Ω  values. Considering the time spent by 

Mathematica to calculate the natural frequencies, it is noticed that although the results are 

very similar, calculations made by including the Coriolis terms takes much longer time 
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than the ones made by excluding this term. Therefore, these terms have not been included 

in the calculations of this study.  
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Figure 1. Configuration of A Uniform, Rotating, Cantilever Timoshenko Beam Featuring 

Bending-Torsion Coupling 
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Figure 2. The Cross-Sectional View and Dimensions the Uniform Timoshenko Beam 

with One Symmetry Axis  
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Figure 3. (a) Cross-Sectional View (b) Side View of the Bending-Torsion Deflections of 

The Reference Point 
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Figure 4. The Normal Mode Shapes of The Rotating Coupled Timoshenko Beam 
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Figure 5. Convergence of the First Five Natural Frequencies 
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Table 1. Ordering Scheme for Bending-Torsion Coupled Timoshenko Beam Formulation 

)1(Ο=
R
x  )(εΟ=

R
w  

)(εξ
Ο=

R
 )(εη

Ο=
R

 

)(εϕ Ο=  )(εψ Ο=  

)( 20 εΟ=
R
u

 )( 2εϕγ Ο=−′= w
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Table 2. Area Integrals for Potential Energy Expression 

Add
A

=∫∫ ξη  z
A

Idd =∫∫ ξηη 2  y
A

Idd =∫∫ ξηξ 2  

Aedd
A

=∫∫ ξηη  ( ) Jdd
A

=+∫∫ ξηξη 22  0== ∫∫∫∫
AA

dddd ξηηξξηξ  
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Table 3. Area Integrals for Kinetic Energy Expression 

mdd
A

=∫∫ ξηρ  z
A

Idd ρξηρη =∫∫ 2  y
A

Idd ρξηρξ =∫∫ 2  

medd
A

=∫∫ ξηρη  ( ) αξηξηρ Idd
A

=+∫∫ 22 0== ∫∫∫∫
AA

dddd ξηρηξξηρξ
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Table 4. Variation of the Natural Frequencies with the Rotational Speed 

Angular Speed Ω  (rad/s) 
0 5 10 15 20 

Present Abaqus Present Abaqus Present Abaqus Present Abaqus Present Abaqus 
1.10 1.10 1.40 1.40 2.04 2.04 2.78 2.78 3.56 3.54 
6.88 6.88 7.17 7.17 7.98 7.97 9.17 9.14 10.62 10.54 
19.25 19.25 19.54 19.54 20.38 20.37 21.71 21.67 23.43 23.33 
37.68 37.69 37.98 37.98 38.87 38.84 40.29 40.22 42.19 42.00 
43.72 43.69 43.73 43.71 43.76 43.78 43.80 43.90 43.87 43.99 N

at
ur

al
 F

re
qu

en
ci

es
 

(H
er

tz
) 

62.24 62.25 62.54 62.55 63.46 63.43 64.94 64.86 66.96 66.77 
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Table 5. Comparison with the Studies in Open Literature 

 Natural Frequencies (Hz) 

 Example 1 Example 2 

Frequency 
order 

Present Sabuncu and 
Evran (2005) 

Present Eslimy-Isfahany, 
and Banerjee (2000) 

1 96.758 96.760 49.4803 49.600 

2 605.489 605.550 97.0028 97.000 

3 1052.020 1052.000 247.631 248.900 

4 1691.420 1692.500 350.921 355.600 

5 3156.050 - 449.395 451.500 

6 3303.250 - 609.273 610.100 

7 5260.090 - 790.255 - 
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Table 6. Effect of the Timoshenko Parameters and Bending-Torsion Coupling 

Natural Frequencies (Hz) Freuency 
order Coupled 

Timoshenko  
Uncoupled 

Timoshenko 
Coupled  

Euler 
1 3.55654 3.55714 3.55673 
2 10.6161 10.6184 10.6183 
3 23.4306 23.4395 23.4433 
4 42.1918 42.2331 42.2365 
5 43.8682 42.7305 43.8715 
6 66.9587 67.0171 67.0791 
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Table 7. Effect of the Coriolis Terms 

 Ω  (rad/sec) 
100 400 700 1000 

Coriolis 
Included 

Coriolis 
Discarded 

Coriolis 
Included

Coriolis 
Discarded

Coriolis 
Included

Coriolis 
Discarded 

Coriolis 
Included

Coriolis 
Discarded

61.9299 61.9279 90.9346 90.9643 133.168 133.272 178.593 178.85 
363.03 363.119 380.513 379.014 393.012 391.047 409.646 406.691 
379.711 379.628 398.712 400.106 458.551 460.138 539.04 541.102 
977.367 977.379 1009.02 1008.78 1074.16 1073.07 1162.7 1158.69 
1135.53 1135.52 1149.03 1149.24 1178.59 1179.59 1226.06 1229.86 N

at
ur

al
 F

re
qu

en
ci

es
 

1801.82 1801.85 1832.86 1832.41 1896.51 1894.91 1983.07 1979.6 
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